ICMCTF 2020 IS CANCELLED
Twitter
#ICMCTF2020
ICMCTF_2020_logo_207x46
avs_sponsored_advancedsurf140x62
  • Overview
    • Introduction & Greetings
    • Organizing Committee
      • Symposium & Session Chairs
    • Awards
      • R.F. Bunshah Annual Award & ICMCTF Lecture Recipient
      • Bill Sproul Award and Honorary ICMCTF Lecture Recipient
      • Graduate Student Award Finalists
    • Lecture Series: Plenary and Exhibitor Keynote
    • Special Events
    • Vendor Exhibit
    • Career Center
    • Manuscripts
    • Sponsors & Advertisers
      • Sponsorship Opportunities
    • Photos
  • Symposia
    • A. Coatings for Use at High Temperatures
    • B. Hard Coatings and Vapor Deposition Technologies
    • C. Fundamentals and Technology of Multifunctional Materials and Devices
    • D. Coatings for Biomedical and Healthcare Applications
    • E. Tribology and Mechanical Behavior of Coatings and Engineered Surfaces
    • F. New Horizons in Coatings and Thin Films
    • G. Surface Engineering – Applied Research and Industrial Applications
    • H. Advanced Characterization Techniques for Coatings, Thin Films, and Small Volumes
    • TS1. Anti- and De-icing Surface Engineering
    • TS2. New Horizons in Boron-Containing Coatings: Modeling, Synthesis and Applications
    • TS3. In-silicio Design of Novel Materials by Quantum Mechanics and Classical Methods
    • TS4. Photocatalytic and Superhydrophilic Surfaces
    • TS5. Thin Films on Polymer Substrates: Flexible Electronics and Beyond
  • Short Courses
    • Plasmas in Physical Vapor Deposition, Including Arcs and HiPIMS – 4/26/20
    • In-situ and Ex-situ Ellipsometry Characterizations of Thin Films – 4/26/20
    • NEW! Design and Deposition of Hard and Superhard Coatings – 4/27/20
    • Reactive Magnetron Sputter Deposition – 4/27/20
    • NEW! Atmospheric Pressure Plasma: Principles, Sources and Applications – 4/28/20
    • Practical Thin Film Characterization – 4/28/20
    • Fundamentals of HiPIMS Plasmas for Thin Film Deposition – 4/29/20
    • Nanomechanics and Tribology of Thin Film Coatings – 4/29/20
    • Industrial Surface Engineering: Fundamentals, Practice and Applications – 4/30/20
    • Understanding and Control Stresses in PVD Thin Films – 4/30/20
  • Housing & Travel
  • Program & Schedule
    • Mobile App
    • Technical Program & Scheduler
      • Technical Program (PDF)
    • Presentation & Poster Guidelines
    • Abstract Book
  • Register

NEW! Atmospheric Pressure Plasma: Principles, Sources and Applications – 4/28/20

Hana Barankova
Professor, Uppsala University, Sweden

Ladislav Bardon
Professor, Uppsala University, Sweden

Course Objectives
  • Understand principles of plasma processes at low and high gas pressures
  • Learn about interactions of atmospheric plasma with solids, gases and liquids
  • Recognize existing and potential technology application of atmospheric pressure plasma
Course Description

Non-equilibrium atmospheric plasma has many potential applications in coating, surface treatment (e.g. for improving the adhesion or before bonding), in cleaning and activation, sterilization and decontamination. Atmospheric pressure plasma enhanced CVD of films can reach very high rates. Extending plasma-reactive processes up to the atmospheric pressure simplifies experimental systems substantially and, in some cases, brings about economic advantages over reduced pressure technologies.

Technologies using the atmospheric pressure plasma sources bring about fast processes, but it is important to be aware of limits given by atmospheric plasma properties and plasma chemical reactions. The course addresses the most important principles, designs and applications of the atmospheric plasma systems.

Course Content
  • Basic differences between gas discharge plasmas at low and high pressures
  • Generation and characteristic properties of the atmospheric plasma
  • Radical plasma chemistry
  • Types of plasma arcs, cascaded arcs, negative and positive corona discharges, dielectric barrier discharges, high frequency discharges, plasma jets, hollow cathodes
  • Large area atmospheric pressure plasma treatment
  • Applications of the atmospheric plasma, coatings, surface treatment
  • Plasma in liquids
  • Plasma catalysis
  • Advantages and limitations of the atmospheric plasma systems
Who should attend?

This course is intended for scientists, engineers, students and technicians interested in the plasma assisted processes, in plasma applications and design of plasma sources.

Course Materials

Course notes will be provided.

Date/Time: Tuesday, April 28, 8:30 a.m.-4:30 p.m.
Cost: $500 Regular/$130 Student

Short Course Registration

All short courses include detailed course notes, morning and afternoon breaks. Lunch is not included in the course registration fee.

Courses run from 8:30 a.m. to 4:30 p.m.

Individual and Company Group discounts available!

ICMCTF 2020 IS CANCELLED – READ MORE

Follow Us

Tweets by AVS_Members

Key Dates

ICMCTF Awards Deadline:
October 1, 2019

Late News Abstract Deadline:
February 5, 2020

Early Registration Deadline:
March 20, 2020

Hotel Reservation Deadline:
March 20, 2020

Manuscript Deadline:
March 20, 2020

Downloads

  • Call for Abstracts FlIer
  • Presentation & Poster Guidelines

Contact

ICMCTF
Yvonne Towse

Conference Administrator
125 Maiden Lane; Suite 15B
New York, N.Y. 10038
icmctf@icmctf.org

 

OverviewSymposiaShort CoursesHousing & TravelProgram & ScheduleRegister
© 2019 AVS. All Rights Reserved.