ICMCTF 2020 IS CANCELLED
Twitter
#ICMCTF2020
ICMCTF_2020_logo_207x46
avs_sponsored_advancedsurf140x62
  • Overview
    • Introduction & Greetings
    • Organizing Committee
      • Symposium & Session Chairs
    • Awards
      • R.F. Bunshah Annual Award & ICMCTF Lecture Recipient
      • Bill Sproul Award and Honorary ICMCTF Lecture Recipient
      • Graduate Student Award Finalists
    • Lecture Series: Plenary and Exhibitor Keynote
    • Special Events
    • Vendor Exhibit
    • Career Center
    • Manuscripts
    • Sponsors & Advertisers
      • Sponsorship Opportunities
    • Photos
  • Symposia
    • A. Coatings for Use at High Temperatures
    • B. Hard Coatings and Vapor Deposition Technologies
    • C. Fundamentals and Technology of Multifunctional Materials and Devices
    • D. Coatings for Biomedical and Healthcare Applications
    • E. Tribology and Mechanical Behavior of Coatings and Engineered Surfaces
    • F. New Horizons in Coatings and Thin Films
    • G. Surface Engineering – Applied Research and Industrial Applications
    • H. Advanced Characterization Techniques for Coatings, Thin Films, and Small Volumes
    • TS1. Anti- and De-icing Surface Engineering
    • TS2. New Horizons in Boron-Containing Coatings: Modeling, Synthesis and Applications
    • TS3. In-silicio Design of Novel Materials by Quantum Mechanics and Classical Methods
    • TS4. Photocatalytic and Superhydrophilic Surfaces
    • TS5. Thin Films on Polymer Substrates: Flexible Electronics and Beyond
  • Short Courses
    • Plasmas in Physical Vapor Deposition, Including Arcs and HiPIMS – 4/26/20
    • In-situ and Ex-situ Ellipsometry Characterizations of Thin Films – 4/26/20
    • NEW! Design and Deposition of Hard and Superhard Coatings – 4/27/20
    • Reactive Magnetron Sputter Deposition – 4/27/20
    • NEW! Atmospheric Pressure Plasma: Principles, Sources and Applications – 4/28/20
    • Practical Thin Film Characterization – 4/28/20
    • Fundamentals of HiPIMS Plasmas for Thin Film Deposition – 4/29/20
    • Nanomechanics and Tribology of Thin Film Coatings – 4/29/20
    • Industrial Surface Engineering: Fundamentals, Practice and Applications – 4/30/20
    • Understanding and Control Stresses in PVD Thin Films – 4/30/20
  • Housing & Travel
  • Program & Schedule
    • Mobile App
    • Technical Program & Scheduler
      • Technical Program (PDF)
    • Presentation & Poster Guidelines
    • Abstract Book
  • Register

In-situ and Ex-situ Ellipsometry Characterizations of Thin Films – 4/26/20

Nikolas Podraza
Associate Professor of Physics
University of Toledo, US

Mathias Schubert
J.A. Woollam Distinguished Professor
University of Nebraska-Lincoln, Nebraska, USA

Course Objectives
  • Understand the rationale for application of ellipsometry for thin film materials characterization.
  • Learn the fundamentals of ellipsometry by theory and applications.
  • Understand data fitting and error evaluation.
  • Develop strategies for ellipsometry measurement and data analysis.
  • Apply in-situ and ex-situ ellipsometry for thin film device characterization.
Course Description

This course will begin with the plane wave concept in linear optics and the use of polarization to investigate physical and structural properties of thin film materials in a technique termed ellipsometry. Principles of physical optics connecting optical properties of materials with the underlying physical processes from the Terahertz to the Deep ultraviolet spectral regions will be explained. The interplay of crystal structure, geometrical form, order and anisotropy will be discussed. Selected examples for fast (in-situ) and wide spectral range (ex-situ) instrumentation operation will be explained, including concepts for fast mapping and imaging. Examples will cover the application of ellipsometry to determine surface and interface roughness, alloy composition, stress and strain in heterointerfaces, for examples, including the optical Hall effect to determine free charge carrier properties in complex heterostructures. Further emphasis will be paid to in-situ monitoring of thin film growth and process conditions.

Course Content
  • Principles of ellipsometry (Maxwell, polarization, instrumentation)
  • Optical material properties (model dielectric functions; effective medium approximations)
  • Ellipsometry characterization of layer stacks
  • Form and low-symmetry induced anisotropy
  • Monitoring thin film materials growth and growth process characterization
  • Mapping and imaging ellipsometry
  • Thin film device characterization
  • Nanostructured thin films
Who should attend?

Anyone interested in using optical methods to characterize thin film materials and their structural and physical-optical properties either during deposition or after deposition. Anyone regardless of their state in their career will find this course useful.

Course Materials

Course notes (powerpoint files) and reference lists will be provided.

Date/Time: Sunday, April 26, 8:30 a.m.-4:30 p.m.
Cost: $500 Regular/$130 Student

Short Course Registration

All short courses include detailed course notes, morning and afternoon breaks. Lunch is not included in the course registration fee.

Courses run from 8:30 a.m. to 4:30 p.m.

Individual and Company Group discounts available!

ICMCTF 2020 IS CANCELLED – READ MORE

Follow Us

Tweets by AVS_Members

Key Dates

ICMCTF Awards Deadline:
October 1, 2019

Late News Abstract Deadline:
February 5, 2020

Early Registration Deadline:
March 20, 2020

Hotel Reservation Deadline:
March 20, 2020

Manuscript Deadline:
March 20, 2020

Downloads

  • Call for Abstracts FlIer
  • Presentation & Poster Guidelines

Contact

ICMCTF
Yvonne Towse

Conference Administrator
125 Maiden Lane; Suite 15B
New York, N.Y. 10038
icmctf@icmctf.org

 

OverviewSymposiaShort CoursesHousing & TravelProgram & ScheduleRegister
© 2019 AVS. All Rights Reserved.